목록딥러닝 (12)
라떼는말이야
당첨 확률이 높은 숫자 10개는 다음과 같다. 33, 38, 39, 36, 16, 35, 45, 17, 13, 24 분석 방법 및 나의 생각 1회 ~ 981회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(982회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..
당첨 확률이 높은 숫자 10개는 다음과 같다. 16, 40, 12, 06, 35, 34, 05, 13, 01, 30 분석 방법 및 나의 생각 1회 ~ 980회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(981회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..
당첨 확률이 높은 숫자 10개는 다음과 같다. 21, 42, 08, 18, 43, 16, 23, 39, 07, 33 분석 방법 및 나의 생각 1회 ~ 979회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(980회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..
당첨 확률이 높은 숫자 10개는 다음과 같다. 01, 07, 15, 32, 17, 11, 10, 04, 13, 08 분석 방법 및 나의 생각 1회 ~ 978회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(979회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..
당첨 확률이 높은 숫자 10개는 다음과 같다. 02, 09, 05, 07, 14, 43, 10, 24, 01, 20 분석 방법 및 나의 생각 1회 ~ 977회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(978회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..
당첨 확률이 높은 숫자 10개는 다음과 같다. 17, 25, 13, 9, 14, 36, 22, 7, 20, 33 분석 방법 및 나의 생각 1회 ~ 976회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(977회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 당연..
당첨 확률이 높은 숫자 10개는 다음과 같다. 24, 21, 10, 19, 11, 22, 20, 04, 08, 27 분석 방법 및 나의 생각 1회 ~ 975회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(976회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..
당첨 확률이 높은 숫자 10개는 다음과 같다. 01, 11, 41, 04, 07, 37, 26, 40, 25, 12 분석 방법 및 나의 생각 1회 ~ 972회의 데이터를 가지고 딥러닝 알고리즘(LSTM)으로 학습을 시켜 1 ~ 45의 숫자가 각각 다음 회차(971회)에 몇 %의 확률로 적중할 것인지 분석한 결과이다. 참고로 LSTM은 RNN 계열이고, 시계열 데이터에서 주로 사용하는 알고리즘이며 이전의 결과가 다음의 결과에 영향을 미치는 데이터를 학습시키는데 사용된다. 즉, 시간에 따라 변하는 집 값의 변화 추이, 주가의 변동, 자연어 처리 등을 학습할 때 주로 사용하는 알고리즘이다. 지금까지 당첨된 번호들이 다음 결과와 연관이 있다는 가정 하에 LSTM 알고리즘을 사용하게 된다. 결과를 보면 알겠지만 ..