Recent Posts
Recent Comments
목록보안 (1)
라떼는말이야
핵심 머신러닝 기술 - 데이터 수집 단계, 특징 공학
머신러닝 프로세스 1) 데이터 수집 단계 모든 데이터는 ‘컴퓨터가 이해할 수 있는’ 형식을 갖추어야 한다. 데이터 수집은 다양한 채널을 통해 이루어질 수 있다. 하드웨어로 수집 한다거나 웹 서버의 정보를 크롤링하거나, 이미 운영 중인 솔루션 또는 운영체제 자체에서 자동으로 기록하는 로그 정보도 좋은 데이터가 될 수 있다. 데이터가 어느 정도로 필요한 지 미리 규정짓는 것은 의미가 없다. 가능한 많은 데이터 확보가 우선 시 된다. 2) 특징 공학(Feature Engineering) 특징 공학 : 모델의 성능을 좌우하는 핵심 요소로, 머신 러닝 프로세스에서 가장 중요한 역할을 담당한다. 특징 공학은 데이터의 의미를 이해하고, 조작하고, 특징을 추출하고, 변환하는 모든 과정을 포함한다. (1) 관찰과 전처리..
프로젝트/인공지능 보안을 배우다
2020. 7. 8. 10:00